AIR PERMITING OF NEW WTE PROJECTS

Proceedings of the 20th Annual North American Waste-to-Energy Conference

NAWTEC20-7006

Portland, Maine

April 24, 2012

Imagine the result

AIR PERMITING OF NEW WTE PROJECTS

Thomas M. Henderson ARCADIS US., Inc. West Palm Beach, Florida, USA

Kevin R. Scott, P.E. ARCADIS US., Inc. Raleigh, North Carolina, USA John L. Hanisch ARCADIS US., Inc. West Palm Beach, Florida, USA

Joel S. Cohn, P.E. ARCADIS US., Inc. Newport News, Virginia, USA

WTE Emissions have been dramatically reduced...

Emissions From Large and Small MSC Units (tpy)

Pollutant	1990 Emissions	2005 Emissions	Percent Reduction
Dioxins/Furans*	4400	15	99+%
Mercury	57	2.3	96%
Cadmium	9.6	0.4	96%
Lead	170	5.5	97%
Particulate	18,600	780	96%
HCI	57,400	3,200	94%
SO ₂	38,300	4,600	88%
NO _x	64,900	49,500	24%

* Dioxin/furan emissions are in units of grams per year toxic equivalent quantity (TEQ), using 1989 NATO toxicity factors.

Source: Walt Stevenson, USEPA Memorandum; Large MSC Docket (EPA-HQ-OAR-20050117); August 10, 2007.

Average Emissions of US WTE Facilities

Pollutant	EPA Cb Standard	Average Emission	% of EPA Standard	Unit
Dioxins/Furans*	0.26	0.05	19.2%	ng/dscm
Mercury	0.08	0.01	12.5%	mg/dscm
Cadmium	0.020	0.001	5%	mg/dscm
Lead	0.02	0.02	10%	mg/dscm
Particulate	24	4	16.7	mg/dscm
HCI	25	10	40%	ppmvd
SO ₂	30	6	20%	ppmvd
NO _x	180	170	94.4%	ppmvd

* Dioxin/furan emissions are in units of grams per year toxic equivalent quantity (TEQ), using 1989 NATO toxicity factors.

Source: J.D. Lauber et al; Waste-to-Energy vs. Long Distance Disposal of Municipal Waste; AWMA Conference, New Orleans, Louisiana; June 12, 2007.

Evolving Emission Limits

		Emission Rate		Popont
Pollutant	Units	EPA Cb Standard	EPA Eb Standard	Expansions
Dioxins/Furans	ng/dscm	30	13	13
Mercury (Hg)	ug/dscm	50	50	28
Cadmium (Cd)	ug/dscm	35	10	10
Lead (Pb)	ug/dscm	400	140	140
Particulate	mg/dscm	25	20	12
HCI	ppmvd	29	25	25
SO ₂	ppmvd	30	30	26
NOx	ppmvd	180-250	150	110-90

PALM BEACH RENEWABLE ENERGY FACILITY NUMBER 2

Three Unit, 3,000tpd Mass Burn 100MW Facility

SPONSOR/OWNER:

Palm Beach County (Florida) Solid Waste Authority

PSD PERMITTING ENGINEER: ARCADIS-US

DESIGN/BUILD/OPERATOR: Babcock & Wilcox Power Generation Group

STATUS: Under Construction with Commercial Operations Scheduled for May 2015

PALM BEACH RENEWABLE ENERGY FACILITY NUMBER 2

Three Unit, 3,000tpd Mass Burn 100MW Facility

DESIGNER/CONTRATOR:

KBR Engineering & Construction

STOCKER: B&W Vølund DynaGrate[®]

BOILER: Babcock & Wilcox

EMISSION CONTROLS: PAC: Babcock & Wilcox SDA: Babcock & Wilcox GEA Niro Atomizer FFBH: Babcock & Wilcox SCR: Babcock & Wilcox

Palm Beach Renewable Energy Facility No. 2

Typical US Mass Burn Facility with Spray Dry Absorber and Fabric Filter Baghouse plus Selective Catalytic Reduction

Selective Catalytic Reduction (SCR) Schematic

Palm Beach Renewable Energy Facility No. 2 PSD Permit Limits

		Emission Rate		Control
Pollutant	Units	EPA Eb Standard	Permit	Technology
NOx	ppmvd	150	45	SCR
CO	ppmvd	100	100	D-GCP
SO ₂	ppmvd	30	24	SDA
HCI	ppmvd	25	20	SDA
VOC	ppmvd	-	7	D-GCP
PM	mg/dscm	20	12	FFBH
Lead (Pb)	ug/dscm	140	125	FFBH
Mercury (Hg)	ug/dscm	50	25	ACI/FFBH
Cadmium (Cd)	ug/dscm	10	10	FFBH
Opacity	percent	10	10	-
Ammonia Slip	ppmvd	-	10	-
Dioxins/Furans	ng/dscm	13	10	D-GCP

FAIRFIELD (Baltimore, Maryland) RENEWABLE ENERGY POWER PLANT

SPONSOR/OWNER:

Energy Answers International

PSD PERMITTING ENGINEER: ARCADIS-US

DESIGN/BUILD/OPERATOR: Energy Answers International

STATUS: Pre-Construction

Four Unit, 4,212 tpd Refuse Derived Fuel Steam and Electricity Plant

Regenerative Selective Catalytic Reduction (RSCR®) Schematic

Fairfield Renewable Energy

Permit Limits

Pollutant	Units	Emission Rate		Control
		Eb Standards	Fairfield Permit	Technology
NOx	ppmvd	150	45	RSCR
CO	ppmvd	150	150	D-GCP
SO ₂	ppmvd	30	24	Turbosorp
HCI	ppmvd	25	25	Turbosorp
VOC	ppmvd	-	10	Turbosorp
PM	mg/dscm	20	10	FFBH
PM ₁₀	mg/dscm	-	24*	FFBH
PM _{2.5}	mg/dscm	-	10	FFBH
Lead (Pb)	ug/dscm	14	75	FFBH
Mercury (Hg)	ug/dscm	50	17	ACI/FFB
Cadmium (Cd)	ug/dscm	10	10	FFBH
Opacity	percent	10	10	-
Ammonia Slip	ppmvd	-	-	-
Dioxins/Furans	ng/dscm	13	13	ACI/Turbosorp
Fluoride (HF)	mg/dscm	-	3.6	Turbosorp
H_2SO_4	lb/MMBtu	-	0.014	Turbosorp
*I insit is fau filtaustels		la se a la la se a sulla da se		

*Limit is for filterable and calculated condensable particulate matter.

AERCIBO (Puerto Rico) RENEWABLE ENERGY POWER FACILITY

SPONSOR/OWNER:

Energy Answers International

PSD PERMITTING ENGINEER: ARCADIS-US

DESIGN/BUILD/OPERATOR: Energy Answers International

STATUS: Permitting

ARCADIS

Two Unit, 2,106tpd Refuse Derived Fuel Facility

GHG BACT ANALYSIS

Control Technologies	Effective	Feasible	Adopted
Utilization of Recycling	No	Yes	No
Utilization of Biomass	Yes	Yes	Yes
Capture/Sequestration	Yes	No	No
Energy Efficiency	Yes	Yes	Yes

GHG Emissions Summary

(tons/yr)				
Emissions Source	Total GHG	Total CO ₂ e		
Energy Answers Facility*	767,858	767,858		
Transportation to Facility	1,187	1,187		
Displaced Landfill	(208,015)	(1,319,354)		
Displaced Oil Power Plant	(697,673)	(697,706)		
Displaced Transport to Landfill	<u>(1,722)</u>	<u>(1,722)</u>		
Total Change In Emissions	(138,365)	(1,249,737)		

*GHG emissions were calculated to use worst case using fuel mix including tire, automobile shredder waste and urban wood waste.

Proposed GHG Emissions Limits

- The CO₂e emission limits shall include combined emissions of CO₂, CH₄ and N₂O, and shall not include biogenic CO₂ emission.
- The CO₂e emissions during normal operation shall not exceed 0.15 lb /lb of steam.
- The CO₂e emissions during normal operation, shall not exceed 454,706 tpy.
- The CO₂e emissions during periods of startup and shut down shall not exceed 4,847 tpy.
- The net heat rate shall not exceed 12.99 MMBTU/MWh.

Aercibo Renewable Energy

Proposed Permit Limits

Dellutent	Units	Emission Rate		Control
Pollutant		Eb Standards	Aercibo Permit	Technology
NOx	ppmvd	150	45	RSCR
СО	ppmvd	150	75	D-GCP
SO ₂	ppmvd	30	24	Turbosorp
HCI	ppmvd	25	20	Turbosorp
VOC	ppmvd	-	7	Turbosorp
PM	mg/dscm	20	10	FFBH
PM ₁₀	mg/dscm	-	24*	FFBH
PM _{2.5}	mg/dscm	-	22*	FFBH
Lead (Pb)	ug/dscm	14	75	FFBH
Mercury (Hg)	ug/dscm	50	17	ACI/FFB
Cadmium (Cd)	ug/dscm	10	10	FFBH
Opacity	percent	10	10	-
Ammonia Slip	ppmvd	-	10	-
Dioxins/Furans	ng/dscm	13	13	ACI/Turbosorp
Fluoride (HF)	mg/dscm	-	3.2	Turbosorp
H_2SO_4	lb/MMBtu	-	1	Turbosorp

*Limit is for filterable and calculated condensable particulate matter.

Conclusions

- Future US WTE facilities will be required to use SCR.
- SCR will increase Capital and Operating Costs but not prohibitively (about 10% each).
- NO_x Emissions will be reduced by 75% compared to existing US WTE facilities.
- Meeting New One-Hour NO_x and SO₂, GHG and PM_{2.5} Standards present significant but not insurmountable challenges.
- PSD Permitting will take longer and cost more.

For More Information Contact:

Tom Henderson or John Hanisch ARCADIS-US

2081 Vista Parkway, Second Floor West Palm Beach, Florida, 33411

(561) 697-7000

tom.henderson@arcadis-us.com

john.hanisch@arcadis-us.com

Imagine the result